
A. Background for Diffusion Model
A diffusion model [19,57] is defined by a forward process

that gradually corrupts data τ 0 „ qpτ 0q over T timesteps
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The forward process hyperparameters βt are set so that τT

is approximately distributed according to a standard normal
distribution, so τT is set to a standard normal prior as well.
The reverse process is trained to match the joint distribution
of the forward process by optimizing the evidence lower
bound (ELBO) [19, 57]. As suggested by the literature [19,
41], we can use the reverse process parametrizations as:
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where αt “ 1´βt, α̂t “
řt

s“1 α
s, and β̂t “ 1´α̂t´1

1´α̂t βt.
We can optimize modified loss instead of the ELBO to

improve the sample quality, depending on whether we learn
Σ or treat it as a fixed hyper-parameter. For the non-learned
case, we use the simplified loss:
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It is a weighted form of the ELBO that resembles denoising
score matching over multiple noise scale [19, 59].

Conditional Diffusion Model The conditional diffu-
sion model aims to learn a conditional distribution pθpτ 0|cq.
We modify the diffusion model to include the condition c as
input to the inverse process:

pθpτ 0:T
|cq “ ppτT

q
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B. Model Architectures
For human pose/motion generation tasks in 3D scenes

and path planning for 3D scene navigation, we use the same
scene encoder, i.e., the PointTransformer [91] adopted from
the original architecture. We pre-train the scene encoder with
indoor scene semantic segmentation task on ScanNet dataset
and freeze it while training SceneDiffuser. The outputs of

the scene encoder are used as the key and value of the cross-
attention module.

For processing the trajectory, we employ an FC layer and
positional embedding to obtain the high-dimensional feature
of the trajectory. We then fuse the trajectory feature with
denoising timestep embedding with a ResBlock. After that,
we feed the fused feature vectors to a self-attention module
and use them as the query of the cross-attention module.
Finally, the computed vector is fed into a feedforward layer
to estimate the noise ϵ.

For the task of dexterous grasp generation for 3D objects,
we use PointNet [45] as the 3D object encoder. Before the
cross-attention module, the outputs of PointNet are reshaped
to pNtoken, Nfeatq, where Ntoken refers to the number of tokens
and Nfeat refers to the dimensions of the feature.

For the task of motion planning for robot arms, we adopt
PointTransformer [91] as the scene encoder, which is jointly
trained from scratch with SceneDiffuser.

C. Objective Design
For human pose and motion generation in 3D scenes,

we encourage contact and non-collision between the gen-
erated human body and scene meshes. Following Zhang
et al. [90], we design optimization objective φopτ t|Sq “

α1φ
collision
o `α2φ

contact
o for pose generation and φopτ t|Sq “

α1φ
collision
o `α2φ

contact
o `α3φ

smoothness
o for motion genera-

tion. α is the balancing weight. φcollision
o minimizes the nega-

tive signed-distance values of the body mesh vertices given
the negative signed distance field (SDF) of the 3D scene
Φ´

s p¨q, which is formulated as
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where Mt is the SMPL-X body mesh at denoising step t.
φcontact
o minimize the distance between contact body parts

of the generated body mesh and the scene mesh, which is
formulated as

φcontact
o “ ´

ÿ

vcPCpMtq

min
vsPS

|vc ´vs|, (A7)

where Cp¨q is the operation of selecting contact part vertices
from the SMPL-X body mesh according to the annotation
in Hassan et al. [15]. We design the smoothness objective
to smooth the motion over time by minimizing the velocity
difference of consecutive frames, which is formulated as

φsmoothness
o “ ´
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ÿ
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}vi`2
´2vi`1

`vi}2, (A8)

where L is the length of the motion sequence. We empirically
set α1 “ 1.0, α2 “ 0.02, and α3 “ 0.001.

We punish the collision between the robotic hand mesh
and object mesh for dexterous grasp generation. We de-
sign optimization φopτ t|Sq “φcollision

o . φcollision
o is similar to



Eq. (A6), where 3D scene is represented as an object and
Mt as the robotic hand mesh at denoising step t.

For path planning for the 3D scene navigation task, we
design an optimization objective φo and φp for generating
collision-free paths toward the goals. The collision-free ob-
jective maximizes the distance between the robot and the
scene vertices in the robot cylinder, formulated as

φo “ ´

L
ÿ
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i qq, (A9)

where ReLUpxq “ maxp0, xq, r is the radius of the robot
cylinder, and distp¨q compute the Euler distance between
scene vertices and robot position on the 2D plane. The plan-
ning objective φp encourages the generated paths toward the
target position. In our work, we formulate it as
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We design the planning objective φp similar to Eq. (A10)
for robot arm motion planning. The objective is defined as
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¸
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where N denotes to the number of revolute joints and j refers
to j-th revolute joint.

D. Implementation Details
D.1. Human Pose Generation in 3D Scenes

Following prior work [90], we represent the human body
with the SMPL-X model. We denote the parameters of
SMPL-X in our setting as xh – pt, R, β, θbqT P R79, where t
is the global translation in meters, R is the global orientation
represented in axis-angle, β P R10 is the body shape fea-
ture, and θb P R63 is the axis-angle representation of 21 body
joints. SMPL-X can map these low-dimensional parameters
into a watertight mesh with a fixed topology, enabling physi-
cal collision and contact modeling. Unlike [90] using scene
depth and semantics, we directly represent the scene with a
point cloud S P R32768ˆ3, which provides raw information
about the 3D scene.

We randomly sample 1000 examples in each test scene for
quantitative evaluation to compute the diversity and physics
metrics. Specifically, we separately calculate the Average
Pairwise Distance (APD) and standard deviation (std) for
global translation t P R3, the rest of local SMPL-X param-
eters pR, β, θbqT P R76, and the marker-based representa-
tion [89] of generated bodies without global translation. We
also report the non-collision score of the generated human
bodies by calculating the proportion of the scene vertices
with positive SDF to the human body and the contact score

by checking whether the body contacts with the scene within
a pre-defined distance threshold, i.e., 0.02m.

To train SceneDiffuser, we use Adam [27] optimizer with
0.0001 as the learning rate. We use 4 NVIDIA A100 GPUs
to train 100 epochs with a batch size of 128. The number of
diffusion steps T in this task is set as 100. For optimization
guidance sampling, we empirically set scale coefficient λ“

2.5.

D.2. Human Motion Generation in 3D Scenes

For the two different settings (with and without start posi-
tion) of human motion generation in 3D scenes, we represent
the single-frame human body of the motion sequence as the
same as the pose generation. To collect training data, we
clip the motion sequences in the PROX dataset into motion
segments with a fixed duration, i.e., 60 frames. We use the
same evaluation metrics as pose generation and report the av-
erage values over motion sequence as the motion generation
performance measure. In this task, the optimizer is Adam,
and the learning rate is 0.0001. We use 4 NVIDIA A100
GPUs to train 300 epochs with 200 diffusion steps and a
batch size of 128. For optimization guidance sampling, we
empirically set scale coefficient λ“ 2.5.

D.3. Dexterous Grasp Generation for 3D Objetcs

We use Shadowhand as our dexterous robotic hand. We
denote qpos as q – pt, R, θq P R33, where t P R3 and R P R6

represent the global translation and orientation respectively,
θ P R24 describes the rotation angles of the revolute joints.
We split the MultiDex [31] into 48 seen objects and 10
unseen objects for training and testing.

For each grasp, we apply 0.5ms´2 acceleration to the
object along ˘xyz directions, and the grasping is successful
if the movements of the object are all within 2cm. For the
diversity, we first capture the mean µi and the standard devi-
ation σi of i revolute joint in the training data grasping pose.
We define the mean pose as µq – pµ1, µ2, ..., µ24q P R24 and
the standard deviation pose as σq – pσ1, σ2, ..., σ24q P R24.
We report the success rate of generated poses that lie at the k
standard deviation level, which means these poses q satisfy
the constraint as µq ´kσ ď q ďµq `kσ. For the depth colli-
sion computation, we sample the surface points H P R3200ˆ3

on the ShadowHand related to the pose q and the surface
points with normal O P R4096ˆ6 on the object. We compute
the collision for ShadowHand surface to the object and re-
port the depth collision among H to show the quality of
generated poses.

To train SceneDiffuser on this task, we use Adam opti-
mizer, set the learning rate as 0.0001, and use 1 NVIDIA
A100 GPU to train 2100 epochs with 64 batch size. For
optimization guidance sampling, we empirically set scale
coefficient λ“ 1.0.



D.4. Path Planning for 3D Scene Navigation

In this task, we consider 3D navigation in realistic scenes,
where the goal is to plan plausible trajectories for a physical
robot from the given start position ŝ0 to the given target
position G in a furnished 3D indoor scene S. We represent
the hallucinated physical robot as a cylinder to simulate
physically plausible trajectories which are collision-free in
the 3D scene. The robot can move in all directions within
a distance in each step without height change. We set the
maximum moving distance as 0.08m, the robot radius as
0.08m, and the robot height as infinite, which means the
robot can only move on the floor that is not occupied.

To construct room-level realistic scenarios for path plan-
ning, we select 61 indoor scenes from ScanNet [9], as shown
in Fig. A1. We annotate these scenes with spatially dense and
physically plausible navigation graphs and collect about 6.3k
trajectories by searching the shortest paths between the ran-
domly selected start and target graph nodes. As the distance
between nodes may be too long for a robot to move in one
step, we refined the trajectories according to the maximum
moving distance. These trajectories have an average step of
60.0, a minimal step of 32, and a maximum step of 120. We
use 4.7k trajectories in 46 scenes as the training data and the
rest 1.6k trajectories in 15 unseen scenes for evaluation. We
set the maximum number of planning steps as 150.

During training, we set the fixed trajectory horizon as
32. We use 4 NVIDIA A100 GPUs to train 50 epochs with
100 diffusion steps and a batch size of 128. The optimizer is
Adam, and the learning rate is 0.0001. During inference, we
empirically set the scale coefficient of optimization guidance
as 1.0 and the scale coefficient of planning guidance as 0.2.

D.5. Motion Planning for Robot Arm

We use the Franka Emika with seven revolute joints as the
robot arm and randomly generate cluttered tabletop scenes
with primitives following specific heuristics. For each scene,
we position the robot arm at the center of the table and
use moveit2 motion planner [50] to synthesize trajectories
constrained by a pair of start and goal poses of the end
effector. We collected 19,800 collision-free trajectories over
200 clustered scenes.

During inference, we execute the planned motions of
SceneDiffuser in IsaacGym [37]. We consider the planning is
successful if our robot arm reaches the goal pose by a certain
L2 norm distance (e.g., 0.2) in the space of revolute joints.
Note that the simulation can not run infinitely; therefore,
we set a limited number of simulation steps (e.g., 300). For
the efficiency evaluation, we capture the average number of
simulation steps.

To train SceneDiffuser on this task, we use Adam opti-
mizer, set the learning rate as 0.0001, and use 4 NVIDIA

A100 GPUs to train 200 epochs with a batch size of 128. We
empirically set the scale coefficient of planning guidance as
0.2 during inference.

D.6. Scaling Factor for the Guidance

Like Ho et al. [19], we notice that the parameter Σ in
Eq. (10) decreases as the denoising step t decreases, which
gradually weakens the guidance during the denoising pro-
cess. Instead of using a constant as the scaling factor, we
empirically schedule the scaling factor by dividing it by Σ.
It reformulates Eq. (10) as

ppτ t´1|τ t,S,Gq «N pτ t´1;µ`λg,Σq

E. Additional Ablative Experiments
We ablate different model architectures, including the

scene encoder and noise prediction module in SceneDiffuser,
diffusion steps and scale coefficient in the optimizer of dex-
terous grasp generation task, and fixed frames and planning
objectives of path planning for 3D scene navigation task.

E.1. Model Architecture

As shown in Tab. A1, we study how different scene model
influences the dexterous grasp generation results. We use
PointNet [45] and PointNet++ [46] as different scene models
to extract the object feature. For more diversity evaluation,
we capture the mean standard deviation among all revolute
joints of the robotic hand qpos. We find that the global feature
extracting from PointNet makes it easier for the model to
learn a mean pose to obtain a higher grasping success rate. In
contrast, the local feature extracted from PointNet++ makes
the generated grasp pose more diverse.

Table A1. Ablation on different scene encoder.

scene encoder
succ. rate (%)Ò

div. (rad.)Ò coll. (mm)Ó
σ 2σ all

PointNet (w/o opt.) 70.65 71.25 71.25 0.0718 17.34
PointNet (w/ opt.) 71.27 70.32 69.84 0.0838 14.61

PointNet++ (w/o opt.) 56.47 66.29 66.25 0.1568 18.53
PointNet++ (w/ opt.) 64.33 60.51 59.53 0.1670 14.37

As shown in Tab. A2, we ablate the module for noise
prediction. We compare the design of cross-attention and
self-attention for processing the condition and input. Cross-
attention indicates learning query from the input τ t and
learning key and value from the scene condition S. Self-
attention indicates concatenating τ t and scene features S
and learning with self-attention. Through our experiments,
we find that with self-attention, the model learns better to
capture the joint distribution of input and condition. This
leads to a slightly lower diversity but better generation qual-
ity and success rate.



Table A4. Ablation on different inpainting horizons and scale
coefficients of the planning guidance.

fixed frames planner scale succ. rate(%)Ò planning stepsÓ

1 0.2 31.25 135.14

7 0.2 65.50 104.30

15 0.2 73.75 90.38

23 0.2 73.25 87.49

31

0.1 53.50 106.23
0.2 62.37 97.02
0.3 56.81 101.54
0.4 50.94 105.11

Table A2. Ablation on different model architecture.

epsilon model
succ. rate (%)Ò

div. (rad.)Ò coll. (mm)Ó
σ 2σ all

CrossAttn. (w/o opt.) 70.65 71.25 71.25 0.0718 17.34
CrossAttn. (w/ opt.) 71.27 70.32 69.84 0.0838 14.61

SelfAttn. (w/o opt.) 74.27 75.94 75.94 0.0535 16.49
SelfAttn. (w/ opt.) 72.01 71.56 71.09 0.0605 13.94

E.2. Diffusion Steps

We study different diffusion steps T in Tab. A3, using
PointNet++ as the scene encoder with cross-attention design.
We report the success rate, diversity, and depth collision of
sampling results in the test set under different diffusion steps,
ranging from 30 to 1000. T balance the diversity and success
rate in dexterous grasp generation, where T “ 30 leads to the
best diversity of generated grasp pose and T “ 1000 leads to
the best all success rate.

Table A3. Ablation on diffusion steps and scale coefficient.

time steps optimizer scale
succ. rate (%)Ò

div. (rad.)Ò coll. (mm)Ó
σ 2σ 3σ all

30 w/o 0.00 60.01 50.94 48.13 0.3418 21.19
30 0.1 0.00 58.72 54.90 51.09 0.3415 19.96
30 0.5 0.00 64.24 51.63 47.81 0.3397 17.41
30 1.0 0.00 60.41 48.76 43.59 0.3393 16.05

100 w/o 0.00 66.62 60.12 58.91 0.2865 19.07
100 0.1 0.00 66.54 60.60 59.53 0.2836 17.55
100 0.5 0.00 61.23 56.71 53.75 0.2898 14.63
100 1.0 0.00 56.79 53.13 48.91 0.2920 14.53

500 w/o 75.00 67.50 67.34 67.34 0.1753 19.29
500 0.1 68.56 65.19 65.00 65.00 0.1733 17.68
500 0.5 62.83 60.25 58.94 58.75 0.1814 15.12
500 1.0 62.21 57.76 55.17 54.37 0.1872 14.36

1000 w/o 56.47 66.29 66.26 66.25 0.1568 18.53
1000 0.1 73.24 71.43 71.04 71.09 0.1572 16.88
1000 0.5 70.18 65.99 65.55 65.62 0.1611 14.37
1000 1.0 64.33 60.51 59.61 59.53 0.1670 14.37

E.3. Scale Coefficient

Among different time steps T , we ablate scale coefficient
λ of the optimization guidance in dexterous grasp generation

in Tab. A3, ranging from 0.0 (denoted as w/o in the table)
to 1.0. Through extensive experiments, we observe that, in
general, the α trades off the depth collision and grasp success
rate. A larger α value leads to fewer collisions and draws
the grasp pose away from the object simultaneously, which
losses the grasp stability and lowers the success rate.

We also ablate the scale coefficient of the planner in path
planning for 3D scene navigation, as shown in Tab. A4. Too
small or too large scale coefficients both lead to a perfor-
mance drop. A small value cannot provide sufficient guid-
ance, whereas a large value diminishes trajectory diversity
with strong guidance, preventing it from escaping obstacles
and dead-ends.

E.4. Fixed Frames for Planning

Since we formulate the planning algorithm as inpainting,
we also ablate the number of the fixed frame in it. In path
planning for 3D scene navigation, we train the SceneDiffuser
with a trajectory length of 32. Therefore, we compare the
settings of fixing the first 1, 7, 15, 23, and 31 frames for in-
painting during the denoising process. The results in Tab. A4
show that the model achieves the best performance while
fixing the first 15 frames.

E.5. Planning Objectives

To explore the influence of different planning objectives,
we design the following four planning objectives and com-
pare them with Eq. (A10).
• We compute the L1 distance between the last frame of the

denoised trajectory and the target position, i.e.,

φp “ ´}G´τ t
L}1. (A12)

• We summarize the L1 distance between all frames of the
denoised trajectory and the target position, i.e.,

φp “ ´

L
ÿ

i“1

}G´τ t
i }1. (A13)

• Similar to Eq. (A10), we only consider the last frame of
the denoised trajectory, i.e.,

φp “ exp

ˆ

1

}G´τ t
L}1

˙

. (A14)

• We compute the L1 distance between the target position
and the frame closest to the target, i.e.,

φp “ ´min
i

}G´τ t
i }1. (A15)

The planning results in Tab. A5 indicate that encouraging
all frames of the denoised trajectory to reach the target posi-
tion surpasses considering only one frame. Besides, directly
using L1 distance tends to perform better than additionally
applying the exponential function.



Table A5. Ablation on different planning objectives.

objective succ. rate(%)Ò planning stepsÓ

φp “ ´}G´τ tL}1 57.06 116.22
φp “ ´

řL
i“1 }G´τ ti }1 75.69 88.02

φp “ exp
´

1
}G´τt

L}1

¯

34.31 131.74

φp “
řL

i“1 exp
´

1
}G´τt

i }1

¯

73.75 90.38
φp “ ´min

i
}G´τ ti }1 56.00 109.02

F. Trainable Optimization and Planning
As shown in Alg. 1, we can optionally train the optimiza-

tion and planning process with observed trajectories. We
optimize the trainable scaling factor λ of the optimization
guidance in pose generation and path planning tasks to ver-
ify its efficacy. Specifically, we use a small MLP model to
map the timestep embedding of each step into a scalar, i.e.,
the scaling factor. We only optimize the MLP while fixing
the pre-trained diffusion model during training. We plot the
learned scaling factor varying with the denoising step from
100 to 1, as shown in Fig. A2. We observe that the scaling
factor of the denoising process at the beginning is much
smaller than at the end. We speculate that the target signal
at the beginning of the denoising process is mostly noise,
such that a large scaling factor cannot optimize it properly.
The scaling factor decrease in the last several steps may be
because this can alleviate excessive guidance and balance
the guidance from other modules, such as the planner.

G. More Qualitative Results
Pose Generation in 3D Scenes We show more qualita-

tive results in Fig. A3.
Motion Generation in 3D Scenes In other scenes, we

provide more sampled human motions from the same start
pose, as shown in Fig. A4. Please refer to the supplemental
demo video for better visualization with rendered anima-

tions.
Path Planning for 3D Scene Navigation Fig. A5

shows some qualitative results of path planning for 3D scene
navigation.

Dexterous Grasp Generation for 3D Objects We
show more qualitative results in Fig. A6. Note that the ob-
jects are unseen during training time.

Motion Planning for Robot Arm We render the plan-
ning results into animations for visualization. Please refer to
the supplemental demo video for the qualitative results.

H. Limitation
The primary limitation of the SceneDiffuser is its

slow training and test speed compared to previous scene-
conditioned generative models, a common issue of diffusion-
based methods. We also observe that the optimization and
planning are highly dependent on the objective designs,
which require efforts on hyper-parameter tuning.

I. Future Work
A promising future direction is extending SceneDiffuser

to richer 3D representations, including RGB-D images,
semantic images, bird-eye view (BEV) images, videos,
3D meshes, and neural radiance field (NeRF) [38]. Such
flexible conditions consume a tremendous amount of 3D
training data, which is also a significant challenge. We
also hope to extend the SceneDiffuser to outdoor scenes,
e.g., the autonomous driving scenarios [3]. Moreover, the
SceneDiffuser can be combined with recent large language
models (LLMs) [2] for automatic generation and planning
with natural language instructions in 3D scenes, which is
promising for the vision and robotics community. Finally,
SceneDiffuser can serve as the tool for analyzing the be-
haviors of humans and agents if we can properly learn the
planning objective, which naturally encodes the values and
preferences that underlie the trajectories.



Figure A1. Scenes and corresponding navigation graphs for path planning. The selected scenes have various regions, diverse room types,
and sufficient layout complexity.
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Figure A2. Trainable scaling factor varying with the denoising step.



(a) cVAE (b) SceneDiffuser (c) Without Opt. (d) With Opt.

Figure A3. More qualitative results of pose generation in 3D scenes.

Figure A4. More qualitative results of motion generation in 3D scenes.

Figure A5. Qualitative results of path planning for 3D scene navigation. The red balls represent the planning result, starting with the
lightest red ball and ending with the darkest red ball. The green ball indicates the target position.



Figure A6. Additional qualitative results of dexterous grasp pose generation for 3D object.




